5 August DRC Director's Report - August 2021 August 5, 2021 By The Fraternal Order of Eagles Diabetes Research Center 0 Postdoctoral research scholar, Calvin Carter, PhD, member of the FOEDRC and recipient of the prestigious FOE Bridge to the Cure award, in collaboration with other FOEDRC researchers, has discovered a safe new way to manage blood sugar non-invasively. Exposing diabetic mice to a combination of static electric and magnetic fields for a few hours per day normalized blood glucose levels and reversed insulin resistance. “The more we look, the more the transfer of electrons seems to underlie diabetes,” Carter said in a Q&A with the American Diabetes Association (ADA). That search was borne out last fall, when Carter and MD/PhD student Sunny Huang, PhD, published ground-breaking findings in Cell Metabolism, showing that static electric and magnetic fields (EMFs) can be used to normalize blood glucose in diabetic mice. Reactions in the press were excited and swift to the researchers’ evidence that blood sugar and insulin sensitivity could be controlled non-invasively. A comprehensive piece by Jennifer Brown in the most recent issue of Medicine Iowa https://medicineiowa.org/spring-2021/next-wave-diabetes-care looks at the discovery’s origins and its implications. A combination of curiosity, luck, and the Iowa culture of collaboration may lit the initial spark, but it was a series of faculty mentors that gave Carter and Huang the time and support to follow that spark’s trail. These faculty have since included E. Dale Abel, MD, PhD, director of the Fraternal Order of Eagles Diabetes Research Center (FOEDRC); Val Sheffield, MD, PhD, FOEDRC member and professor in the Division of Medical Genetics; and Eric Taylor, PhD, director of the FOEDRC’s Metabolomics Core Facility and associate professor of Molecular Physiology and Biophysics. And now, with Abel and Sheffield as principal investigators, and Carter and Taylor as co-investigators, the team will continue to follow that trail with the support of a five-year, $2.4M R01. The project will allow the researchers to examine more closely why certain molecules, reactive oxygen species (ROS), behave like “tiny magnetic antenna,” as Carter puts it. One ROS, a superoxide in the liver, has been receptive to EMFs in helping modulate insulin sensitivity. Its removal in mouse experiments negated the earlier observed effects that launched Carter and Huang’s work. As Brown points out in her article, human trials are still to come, but preliminary tests on human liver cells are promising. She quotes Carter on the end goal: “Our dream is to create a new class of noninvasive medicines that remotely take control of cells to fight disease.” “This grant is really the next inevitable step in the process,” Abel said. “All credit is due to Calvin and Sunny, who made the initial discovery, but also to the team-based environment of the FOEDRC and Carver College of Medicine. There are mentors around every corner ready to pitch in when something important comes up. We are all excited to see what is next, not only for this project, which could fundamentally change diabetes care, but also for Calvin and Sunny.” Related Articles DRC Director's Report - July 2021 The Spring 2021 issue of the Carver College of Medicine Magazine “Medicine at Iowa”, circulated to all UI alumni, featured an important serendipitous breakthrough by scientists at the University of Iowa Fraternal Order of Eagles Diabetes Research Center (FOEDRC). FOEDRC scientists discovered at safe new way to manage blood sugar non-invasively with electromagnetic fields (EMFs). This discovery could have major benefits in diabetes care, particularly for patients whose current treatment plan is cumbersome and involves checking their blood sugar multiple times daily with finger sticks. DRC Director's Report - April 2021 FOEDRC member Matthew Potthoff, Ph.D., Associate Professor of Neuroscience and Pharmacology, and graduate student Sharon Jensen-Cody recently wrote a review article entitled: “Hepatokines and metabolism: Deciphering communication from the liver” that was published in the Journal Molecular Metabolism. This article was featured on the cover of the February issue of the Journal, that increased the visibility of their work. DRC Director's Report - August 2020 The prevalence of obesity continues to increase worldwide due to changes in dietary composition including the addition of sweetners to many food products and evolving patterns of eating behaviors. In particular, excessive consumption of sugars has been linked to metabolic diseases such as diabetes, insulin resistance and type 2 diabetes. Fibroblast growth factor 21 (FGF21) is a liver-derived hormone that signals to the brain to reduce sugar intake, but the mechanism for this effect was unknown. This new study by Ph.D. student Sharon Jensen-Cody and other colleagues in the laboratory of Matt Potthoff, Associate Professor in the Fraternal Order of Eagles Diabetes Center and Department of Pharmacology and Neuroscience discovered that FGF21 signals to specific nerve cells called glutamatergic neurons in the brain to lower sugar intake and sweet-taste preference. DRC Director's Report - January 2021 A recent study by a team of UI researchers led by E. Dale Abel, MD, PhD, Director, FOEDRC discovered eating a ketogenic diet rescued mice from heart failure. The study, published in the November issue of the journal Nature Metabolism, was one of three companion papers from independent research teams that all point to the damaging effects of excess sugar (glucose) and its breakdown products on the heart. The UI study also revealed the potential to mitigate that damage by supplying the heart with alternate fuel sources in the form of high-fat diets. Given its need for a constant, reliable supply of energy, the heart is very flexible about the type of molecules it can burn for fuel. Most of the heart’s energy comes from metabolizing fatty acids, but heart cells can also burn glucose and lactate, and also ketones. DRC Director's Report - March 2021 This month, the Spring 2021 issue of the Iowa Magazine devoted its cover and featured the University of Iowa Fraternal Order of Eagles Diabetes Research Center (FOEDRC). The heartwarming article shares real life testimonies of diabetic individuals, cared for at the University of Iowa and the impact of diabetes on their daily life. The desire for relief is real and certainly not lost on physicians and scientists at the FOEDRC. The Center’s mission is to improve the lives of individuals with the disease and find a cure. Every day dedicated FOEDRC scientists conduct a wide range of research projects to improve and benefit the lives of many. DRC Director's Report - May 2021 Obesity has reached epidemic proportions in the US and around the world. This is a problem because being obese increases the likelihood of developing serious medical problems such as type 2 diabetes, high blood pressure and cardiovascular diseases such as heart attacks and heart failure. Obesity also increases the risks of complications from COVID-19 infections. We still do not understand all of the reasons why obesity develops and why some people develop complications and others do not. In work recently published in the Journal Molecular Metabolism, FOEDRC member Dr. Kamal Rahmouni, PhD, professor of Neuroscience, Pharmacology, and Internal Medicine, in collaboration with FOEDRC colleagues at the University of Iowa, identified a protein complex, called the BBSome. These are present in neurons (nerve cells) in a part of the brain called the hypothalamus. Showing 0 Comment Comments are closed.