9 February DRC Director's Report - December 2021 February 9, 2022 By The Fraternal Order of Eagles Diabetes Research Center DRC, Iowa, Diabetes, Diabetes Research Center 0 On September 23, the Carver College of Medicine hosted the Fall 2021 investiture to celebrate endowed faculty appointments. The receipt of endowed chairs recognizes faculty whom have established a track record of accomplishment and whose ongoing success will pave the way for the future of medicine. We are proud to announce that Matthew Potthoff, PhD, associate professor in the Department of Neuroscience and Pharmacology is the newest FOEDRC member appointed to an endowed chair. Specifically, Dr. Potthoff is the recipient of the Roy J. Carver Professorship in Neuroscience and Pharmacology. Dr. Potthoff’s research explores how peripheral hormonal cues signal the brain to control body weight and blood glucose levels. Potthoff and his research colleagues also study the role of epigenetics, which refers to the way in which the environment alters how DNA ultimately makes proteins, in regulating activity in brain cells and their impact on metabolism, neurodegeneration, and aging. Endowed chairs are a valuable asset to the FOEDRC, as they confer prestige to the holder and University of Iowa; and contribute to our ability to recruit and retain the best diabetes and obesity scholars at the university and from institutions across the country. Kudos to Dr. Potthoff! Related Articles DRC Director's Report - December 2018 As we come to the end of another successful year for the FOEDRC, I want to thank the FOE and my colleagues within the Diabetes Research Center for continuing to push the research boundaries to improve the lives of many who suffer from diabetes. On a personal note, I received a number of honors for my work this year including being asked to deliver the Presidential Lecture of the University of Iowa, receiving Fraternal Order of Eagles Humanitarian Award and the 2018 History Makers Award - the African American Museum of Iowa (AAMI). My receipt of this recognition is really a recognition of what you do and I consider myself very fortunate to lead such an outstanding organization. To close out the year I thought you might be interested in reading about some ways that our researchers are turning “fun and games” into a benefit for our patients with diabetes. DRC Director's Report - December 2018 As we come to the end of another successful year for the FOEDRC, I want to thank the FOE and my colleagues within the Diabetes Research Center for continuing to push the research boundaries to improve the lives of many who suffer from diabetes. On a personal note, I received a number of honors for my work this year including being asked to deliver the Presidential Lecture of the University of Iowa, receiving Fraternal Order of Eagles Humanitarian Award and the 2018 History Makers Award - the African American Museum of Iowa (AAMI). My receipt of this recognition is really a recognition of what you do and I consider myself very fortunate to lead such an outstanding organization. To close out the year I thought you might be interested in reading about some ways that our researchers are turning “fun and games” into a benefit for our patients with diabetes. DRC Director's Report - July 2021 The Spring 2021 issue of the Carver College of Medicine Magazine “Medicine at Iowa”, circulated to all UI alumni, featured an important serendipitous breakthrough by scientists at the University of Iowa Fraternal Order of Eagles Diabetes Research Center (FOEDRC). FOEDRC scientists discovered at safe new way to manage blood sugar non-invasively with electromagnetic fields (EMFs). This discovery could have major benefits in diabetes care, particularly for patients whose current treatment plan is cumbersome and involves checking their blood sugar multiple times daily with finger sticks. DRC Director's Report - August 2021 Postdoctoral research scholar, Calvin Carter, PhD, member of the FOEDRC and recipient of the prestigious FOE Bridge to the Cure award, in collaboration with other FOEDRC researchers, has discovered a safe new way to manage blood sugar non-invasively. Exposing diabetic mice to a combination of static electric and magnetic fields for a few hours per day normalized blood glucose levels and reversed insulin resistance. “The more we look, the more the transfer of electrons seems to underlie diabetes,” Carter said in a Q&A with the American Diabetes Association (ADA). That search was borne out last fall, when Carter and MD/PhD student Sunny Huang, PhD, published ground-breaking findings in Cell Metabolism, showing that static electric and magnetic fields (EMFs) can be used to normalize blood glucose in diabetic mice. Reactions in the press were excited and swift to the researchers’ evidence that blood sugar and insulin sensitivity could be controlled non-invasively. DRC Director's Report - April 2021 FOEDRC member Matthew Potthoff, Ph.D., Associate Professor of Neuroscience and Pharmacology, and graduate student Sharon Jensen-Cody recently wrote a review article entitled: “Hepatokines and metabolism: Deciphering communication from the liver” that was published in the Journal Molecular Metabolism. This article was featured on the cover of the February issue of the Journal, that increased the visibility of their work. DRC Director's Report - December 2020 Dr. Vitor Lira Associate Professor of Health and Human Physiology and member of the FOEDRC was recently awarded a new grant from the National Institutes of Health in the amount of $563,723. The grant entitled: “Molecular regulation of protein turnover in skeletal muscle” will study an important condition that afflicts many individuals as they age, particularly those with diabetes. Aging-related skeletal muscle atrophy and weakness, also referred to as sarcopenia, affects millions of people contributing to the development of several chronic conditions associated with poor health outcomes, such as diabetes, cardiovascular diseases and neurodegenerative diseases. Although sarcopenia remains poorly understood and lacks effective therapy, aged muscles manifest a problem of poor protein turnover or recycling which is called proteotoxicity. Showing 0 Comment Comments are closed.