18 May DRC Director's Report - May 2020 May 18, 2020 By The Fraternal Order of Eagles Diabetes Research Center DRC, Diabetes, Iowa, Dr. Abel, Research, Eagles 0 Diabetes is a disease of uncontrollable high blood glucose. Insulin, the hormone that reduces blood glucose, is secreted from beta cells embedded in the pancreas in structures called islets. Although overnutrition has been blamed for the inability of beta cells to secrete enough insulin in type 2 diabetes, it has remained unclear how overnutrition causes beta cells to fail. This is a critical question to solve in order to develop effective therapy to protect beta cells in conditions of overnutrition and to cure type 2 diabetes. The research team led by Yumi Imai, MD, Associate Professor of Internal Medicine, Endocrinology and Metabolism and Fraternal Order of Eagles Professor for Diabetes Research, has been tackling this key question using advanced techniques including gene modulation and imaging tools in islets from human organ donors, which has led to new exciting findings that will be featured in the June 2020 issue of “Diabetes”, a flagship basic research journal of the American Diabetes Association. The research team showed that an enzyme called adipose triglyceride lipase (ATGL) is a pivotal enzyme that digests lipids (fats) in human beta cells and that fatty acids released by this enzyme are critically important for the stability of a protein called syntaxin 1a that mediates the final step of insulin secretion. However, the new research showed that this process of fat digestion, called lipolysis, is impaired in human islets obtained from individuals affected by type 2 diabetes. Thus, the research unmasked a previously unrecognized pathway that may explain why beta cells fail to secrete insulin and become loaded with lipids in type 2 diabetes. While more research is needed to find a way to correct the defect in lipolysis in beta cells affected by type 2 diabetes, the study has identified a potential new target to improve insulin secretion and holds high promise to lead to new drug therapies for type 2 diabetes. Related Articles DRC Director's Report - October 2020 Please join us in welcoming Bhagirath Chaurasia, MS, PhD, to the University of Iowa and to the Fraternal Order of Eagles Diabetes Research Center. Dr. Chaurasia also joins the Division of Endocrinology from his previous position as Assistant Professor of Nutrition and Integrative Physiology at the University of Utah. He received his PhD from the University of Cologne in Germany before working as a Postdoctoral Research Fellow at Duke-NUS Medical School in Singapore. DRC Director's Report - December 2020 Dr. Vitor Lira Associate Professor of Health and Human Physiology and member of the FOEDRC was recently awarded a new grant from the National Institutes of Health in the amount of $563,723. The grant entitled: “Molecular regulation of protein turnover in skeletal muscle” will study an important condition that afflicts many individuals as they age, particularly those with diabetes. Aging-related skeletal muscle atrophy and weakness, also referred to as sarcopenia, affects millions of people contributing to the development of several chronic conditions associated with poor health outcomes, such as diabetes, cardiovascular diseases and neurodegenerative diseases. Although sarcopenia remains poorly understood and lacks effective therapy, aged muscles manifest a problem of poor protein turnover or recycling which is called proteotoxicity. DRC Director's Report - July 2020 The greatest risks to long-term health in people with diabetes arise from diabetic complications, particularly cardiovascular disease. However, the mechanisms by which the metabolic changes associated with type 2 diabetes like insulin resistance increases the risk of heart failure are less understood. In a recent publication in JCI Insight, E. Dale Abel, MD, PhD, and other members of the Fraternal Order of Eagles Diabetes Research Center in collaboration with other institutions, have uncovered an important molecular link between diabetes and heart failure. DRC Director's Report - August 2020 The prevalence of obesity continues to increase worldwide due to changes in dietary composition including the addition of sweetners to many food products and evolving patterns of eating behaviors. In particular, excessive consumption of sugars has been linked to metabolic diseases such as diabetes, insulin resistance and type 2 diabetes. Fibroblast growth factor 21 (FGF21) is a liver-derived hormone that signals to the brain to reduce sugar intake, but the mechanism for this effect was unknown. This new study by Ph.D. student Sharon Jensen-Cody and other colleagues in the laboratory of Matt Potthoff, Associate Professor in the Fraternal Order of Eagles Diabetes Center and Department of Pharmacology and Neuroscience discovered that FGF21 signals to specific nerve cells called glutamatergic neurons in the brain to lower sugar intake and sweet-taste preference. DRC Director's Report - September 2020 Renata Pereira, PhD, Research Assistant Professor of Internal Medicine, Endocrinology and Metabolism, and member of the FOEDRC, is the recipient of a new NIH R01 grant for $1.9M to support her work entitled The role of the integrated stress response in brown adipose tissue-mediated metabolic adaptations. “Obesity and related conditions, such as diabetes and heart disease, are some of the greatest health problems affecting today’s society. In an effort to better understand ways in which the body can increase its metabolism to burn fat and prevent the effects of those diseases, Dr. Pereira has focused her studies on special fat cells called brown (or beige) fat cells. DRC Director's Report - November 2020 FOE Diabetes Research Center scientists from the University of Iowa have discovered a safe new way to manage blood sugar non-invasively. Exposing diabetic mice to a combination of static electric and magnetic fields for a few hours per day normalizes two major hallmarks of type 2 diabetes, namely reducing blood glucose levels and preventing insulin resistance. These new findings were published Oct. 6 in Cell Metabolism. Showing 0 Comment Comments are closed.