17 May DRC Director's Report - May 2021 May 17, 2021 By The Fraternal Order of Eagles Diabetes Research Center 0 Obesity has reached epidemic proportions in the US and around the world. This is a problem because being obese increases the likelihood of developing serious medical problems such as type 2 diabetes, high blood pressure and cardiovascular diseases such as heart attacks and heart failure. Obesity also increases the risks of complications from COVID-19 infections. We still do not understand all of the reasons why obesity develops and why some people develop complications and others do not. In work recently published in the Journal Molecular Metabolism, FOEDRC member Dr. Kamal Rahmouni, PhD, professor of Neuroscience, Pharmacology, and Internal Medicine, in collaboration with FOEDRC colleagues at the University of Iowa, identified a protein complex, called the BBSome. These are present in neurons (nerve cells) in a part of the brain called the hypothalamus. The hypothalamus is a small area in the brain that determines whether the calories derived from the food we eat is burned or stored in the form of fat. The BBsome in these nerve cells regulate body fat and development of obesity. Dr. Rahmouni’s team found when the BBSome was removed from neurons of the hypothalamus, animals progressively increased body fat and weight resulting in obesity. This is due to inability of the hypothalamus to properly send signals to peripheral tissues that burn calories. As a result, these animals had lower metabolic rates as indicated by reduced energy expenditure. Because of this, their bodies were burning less calories than they should. Therefore, most of the ingested calories were directed to the fat tissues for storage, which increased the mass of fat tissue leading to obesity. These findings indicate that defects in the BBSome could be a potential cause of obesity. Very interestingly, the obesity that resulted from absence of the BBSome in the hypothalamus did not lead to diabetes, insulin resistance or high blood pressure. These findings are very similar to what is seen in a small subset of obese humans, referred to as “healthy obese,” who do not develop type 2 diabetes and cardiovascular diseases. The Rahmouni group is now conducting follow up studies to further understand what confers this remarkable protection against obesity-related conditions. Answering this question will reveal how metabolic and cardiovascular disease develop in obesity and may lead to more specific ways to treat these complications, particularly in individuals who struggle to lose weight. Rouabhi M, Guo DF, Morgan DA, Zhu Z, López M, Zingman L, Grobe JL, Rahmouni K.. BBSome Ablation in SF1 Neurons Causes Obesity without the Comorbidities. Mol Metab. 2021 Mar 12:101211. doi: 10.1016/j.molmet.2021.101211. Epub ahead of print. PMID: 33722691. Related Articles DRC Director's Report - July 2021 The Spring 2021 issue of the Carver College of Medicine Magazine “Medicine at Iowa”, circulated to all UI alumni, featured an important serendipitous breakthrough by scientists at the University of Iowa Fraternal Order of Eagles Diabetes Research Center (FOEDRC). FOEDRC scientists discovered at safe new way to manage blood sugar non-invasively with electromagnetic fields (EMFs). This discovery could have major benefits in diabetes care, particularly for patients whose current treatment plan is cumbersome and involves checking their blood sugar multiple times daily with finger sticks. DRC Director's Report - August 2021 Postdoctoral research scholar, Calvin Carter, PhD, member of the FOEDRC and recipient of the prestigious FOE Bridge to the Cure award, in collaboration with other FOEDRC researchers, has discovered a safe new way to manage blood sugar non-invasively. Exposing diabetic mice to a combination of static electric and magnetic fields for a few hours per day normalized blood glucose levels and reversed insulin resistance. “The more we look, the more the transfer of electrons seems to underlie diabetes,” Carter said in a Q&A with the American Diabetes Association (ADA). That search was borne out last fall, when Carter and MD/PhD student Sunny Huang, PhD, published ground-breaking findings in Cell Metabolism, showing that static electric and magnetic fields (EMFs) can be used to normalize blood glucose in diabetic mice. Reactions in the press were excited and swift to the researchers’ evidence that blood sugar and insulin sensitivity could be controlled non-invasively. DRC Director's Report - April 2021 FOEDRC member Matthew Potthoff, Ph.D., Associate Professor of Neuroscience and Pharmacology, and graduate student Sharon Jensen-Cody recently wrote a review article entitled: “Hepatokines and metabolism: Deciphering communication from the liver” that was published in the Journal Molecular Metabolism. This article was featured on the cover of the February issue of the Journal, that increased the visibility of their work. DRC Director's Report - January 2021 A recent study by a team of UI researchers led by E. Dale Abel, MD, PhD, Director, FOEDRC discovered eating a ketogenic diet rescued mice from heart failure. The study, published in the November issue of the journal Nature Metabolism, was one of three companion papers from independent research teams that all point to the damaging effects of excess sugar (glucose) and its breakdown products on the heart. The UI study also revealed the potential to mitigate that damage by supplying the heart with alternate fuel sources in the form of high-fat diets. Given its need for a constant, reliable supply of energy, the heart is very flexible about the type of molecules it can burn for fuel. Most of the heart’s energy comes from metabolizing fatty acids, but heart cells can also burn glucose and lactate, and also ketones. DRC Director's Report - March 2021 This month, the Spring 2021 issue of the Iowa Magazine devoted its cover and featured the University of Iowa Fraternal Order of Eagles Diabetes Research Center (FOEDRC). The heartwarming article shares real life testimonies of diabetic individuals, cared for at the University of Iowa and the impact of diabetes on their daily life. The desire for relief is real and certainly not lost on physicians and scientists at the FOEDRC. The Center’s mission is to improve the lives of individuals with the disease and find a cure. Every day dedicated FOEDRC scientists conduct a wide range of research projects to improve and benefit the lives of many. DRC Director's Report - June 2021 Pancreatic beta cells are only cells that can make insulin in humans. In type 2 diabetes, pancreatic beta cells are damaged and cannot make sufficient insulin to keep blood glucose levels normal. As overnutrition and obesity is a well-known risk factor for type 2 diabetes, it is important to find a way to protect beta cells from over nutrition. In a recently published study in the scientific journal JCI Insight, led by Dr. Yumi Imai, Associate Professor of Internal Medicine and member of the FOEDRC, her laboratory has discovered that a protein known as Perilipin 2 plays an important role in protecting beta cells under nutritional challenge. Showing 0 Comment Comments are closed.